Product Description

Polish Surface Treatment Compression Fittings Male Threaded Coupling for the Conveyance of Fluids at High Pressures

Product Description

IRRIPLAST PP compression fittings line has been designed for the conveyance of fluids at high pressures, for water conveyance, for potable water distribution and applications in the thermo-hydraulic sector. This product line is accordance with the most severe international standards in terms of mechanical properties and alimentary compatibilities.




Heterophasic block polypropylene co-polymer(PP-B) of exceptional mechanical properties even at high temperature.

Blocking bush(D)



Polypropylene with dye master of high stability to UV rays andsolidity to heat( S grade according to standard DIN54004)

Clinching ring(C)

Polyacetal resin(POM)with high mechanical resistance And hardness

O Ring gasket(E)

Special elastomeric acrylonitrile rubber(EPDM) for alimentary use

Description Code SIZE Weight (g/pc) pcs/ carton
Female thread coupling A1003 20*1/2 31 600
20*3/4 32 560
20*1 37 460
25*1/2 47 375
25*3/4 49 360
25*1 53 330
32*1/2 76 240
32*3/4 77 220
32*1 79 210
32*11/4″ 86 192
40*1 109 192
40*11/4 112 130
40*11/2″ 125 120
50*1″ 185 80
50*11/4 193 80
50*11/2″ 200 80
50*2″ 206 80
63*11/4 294 48
63*11/2 304 48
63*2 305 42
75*2″ 481 27
75*21/2″ 496 24
75*3″ 560 24
90*21/2″ 720 14
90*3″ 775 14
90*4″ 848 14
110*3″ 1254 8
110*4″ 1264 8



1. Light weight, easy to load and unload
2. Good chemicals and drugs resistance
3. Small resistance to fluidity
4. Strong mechanical strength
5. Good electrical insulation
6. Water quality unaffected
7. Simple installation


1. Structure Engineering
2. Water supply system
3. for Agriculture Irrigation


Main Products

View more products,you can click products keywords…

PPR Pipe PPR Fitting
PP Union Ball Valve PP Compression Fitting
Clamp Saddle Solenoid Valve


PVC Ball Valves

Company Profile

1.Any inquiries will be replied within 24 hours.
2.Professional manufacturer.
3.OEM is available.
4.High quality, standard designs,reasonable&competitive price,fast lead time.
5.Faster delivery: Sample will be prepared in 2-3 days.
6.Shipping: We have strong cooperation with DHL,TNT,UPS,MSK,China Shipping,etc.


1.What is your MOQ?
Our MOQ is usually 5 CTNS for size from 20-50mm.

2.What is your delievery time?
The time of delievery is around 30-45days.

3.What is your payment terms?
We accept 30% T/T in advance,70% before shipment .or 100% L/C.

4.What is the shipping port?
We ship the goods to HangZhou or ZheJiang port.

5.What is the address of your company?
Our company is located in the HangZhou, HangZhou ZHangZhoug Province,China.You are welcomed to visit our factory.

6.How about the samples?
we could send you the samples for free, and you need to pay the courier fee.
If there are too much samples, then you also need to undertake the sample fee.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Fluid Coupling and Smooth Power Transmission during Starting and Stopping

A fluid coupling is designed to facilitate smooth power transmission during the starting and stopping phases of machinery and equipment. It achieves this by utilizing the principle of hydrodynamic torque transmission through a fluid medium.

Starting Phase: When power is initially supplied to the input shaft of the fluid coupling, the impeller (also known as the pump) begins to rotate, imparting energy to the fluid inside the coupling. As the fluid gains kinetic energy, it starts moving outward towards the turbine (also called the driven element) due to centrifugal force.

The kinetic energy of the moving fluid causes the turbine to start rotating, transmitting torque to the output shaft. During this starting phase, there is a slight time lag, known as the “slip,” between the impeller and the turbine. However, as the fluid coupling reaches its operational speed, the slip reduces, and the turbine matches the speed of the impeller, resulting in smooth power transmission from the input to the output shaft.

The fluid coupling’s ability to control the slip ensures a gradual and controlled acceleration of the driven equipment, minimizing stress on the drivetrain components and preventing sudden shock loads.

Stopping Phase: When power to the input shaft is reduced or cut off, the impeller slows down, and the kinetic energy in the fluid decreases. As a result, the fluid moves away from the turbine towards the center of the coupling, reducing the torque transmission between the input and output shafts.

This characteristic of the fluid coupling aids in smoothly decelerating the connected equipment, preventing sudden jolts or jerks during the stopping process. The ability to control the slip during deceleration ensures that the driven machinery comes to a gradual and controlled stop, enhancing safety and protecting the equipment from damage.

The combination of hydrodynamic torque transmission and the ability to control the slip makes fluid couplings ideal for applications where smooth power transmission during starting and stopping is essential. Industries such as mining, construction, metal processing, marine propulsion, and power generation benefit from the reliable and efficient performance of fluid couplings in various machinery and equipment.

fluid coupling

Cost Implications of Using Fluid Couplings in Comparison to Other Power Transmission Methods

The cost implications of using fluid couplings in power transmission depend on various factors, including the application requirements, the size of the system, and the operational conditions. While fluid couplings offer several advantages, they may have different cost considerations compared to other power transmission methods like mechanical clutches, VFDs (Variable Frequency Drives), and direct mechanical drives.

1. Initial Investment:

The initial cost of a fluid coupling can be higher than that of a mechanical clutch or a direct mechanical drive. Fluid couplings contain precision components, including the impeller and turbine, which can impact their initial purchase price.

2. Maintenance Costs:

Fluid couplings are generally considered to have lower maintenance costs compared to mechanical clutches. Mechanical clutches have wear and tear components that may require more frequent replacements, leading to higher maintenance expenses over time.

3. Energy Efficiency:

Fluid couplings are highly efficient in power transmission, especially during soft-start applications. Their ability to reduce shock loads and provide a smooth acceleration can result in energy savings and operational cost reductions.

4. Space and Weight:

Fluid couplings are usually more compact and lighter than some mechanical clutches, which can be advantageous in applications with space constraints or weight limitations.

5. Specific Application Considerations:

The suitability and cost-effectiveness of fluid couplings versus other power transmission methods can vary based on specific application requirements. For example, in soft-start applications, fluid couplings may be the preferred choice due to their ability to reduce mechanical stress and protect connected equipment.

6. Lifespan and Reliability:

While the initial cost of a fluid coupling might be higher, their longevity and reliability can lead to lower overall life cycle costs compared to other power transmission methods.

In conclusion, the cost implications of using fluid couplings in power transmission depend on the particular application and the total cost of ownership over the equipment’s lifespan. Although fluid couplings may have a higher initial investment, their long-term reliability, energy efficiency, and lower maintenance costs can make them a cost-effective choice in many industrial applications.

fluid coupling

Can Fluid Couplings be Retrofitted into Existing Machinery?

Yes, fluid couplings can be retrofitted into existing machinery in many cases. Retrofitting is a process of adding new components or technologies to existing equipment to improve its performance or functionality. Fluid couplings are versatile and can often be integrated into various industrial machines and power transmission systems.

The process of retrofitting a fluid coupling involves several steps:

  1. Evaluation: Before retrofitting, a thorough evaluation of the existing machinery is necessary. Engineers need to assess the machine’s design, power requirements, and other relevant factors to determine the suitability of a fluid coupling.
  2. Compatibility: Fluid couplings should be compatible with the existing machine’s shaft, motor, and driven equipment. If necessary, modifications may be required to ensure a proper fit.
  3. Installation: The installation process involves mounting the fluid coupling onto the machine’s shaft and connecting it to the motor and driven equipment.
  4. Alignment: Precise alignment of the fluid coupling is crucial for optimal performance and to avoid issues such as vibration and wear.
  5. Testing: After installation, the retrofitted system undergoes testing to ensure that it functions as intended and meets the desired performance goals.

Retrofitting fluid couplings can offer various benefits, including:

  • Improved Energy Efficiency: Fluid couplings can enhance energy efficiency by reducing power losses and improving the overall power transmission system’s efficiency.
  • Enhanced Protection: Fluid couplings provide protection against shocks and overloads, safeguarding the machinery and its components from damage.
  • Reduced Maintenance: The smooth start and reduced stress on the machine during operation can lead to lower maintenance requirements and longer equipment lifespan.
  • Soft Start: Fluid couplings offer a soft start, which reduces the mechanical stress on the machine during startup, extending its life and minimizing downtime.

However, it is essential to involve qualified engineers and technicians for the retrofitting process to ensure proper installation, alignment, and performance of the fluid coupling in the existing machinery.

China high quality Polish Surface Treatment Compression Fittings Male Threaded Coupling for The Conveyance of Fluids at High Pressures  China high quality Polish Surface Treatment Compression Fittings Male Threaded Coupling for The Conveyance of Fluids at High Pressures
editor by CX 2024-04-04